References#

[1]

Donald B. Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976. URL: http://www.jstor.org/stable/2335739.

[2]

Wenjie Du, David Cote, and Yan Liu. SAITS: Self-Attention-based Imputation for Time Series. Expert Systems with Applications, 219:119619, 2023. URL: https://arxiv.org/abs/2202.08516, doi:10.1016/j.eswa.2023.119619.

[3]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[4]

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: long-term forecasting with transformers. In The Eleventh International Conference on Learning Representations. 2023. URL: https://openreview.net/forum?id=Jbdc0vTOcol.

[5]

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis. In The Eleventh International Conference on Learning Representations. 2023. URL: https://openreview.net/forum?id=ju_Uqw384Oq.

[6]

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, 11121–11128. Jun. 2023. URL: https://ojs.aaai.org/index.php/AAAI/article/view/26317, doi:10.1609/aaai.v37i9.26317.

[7]

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. ETSformer: exponential smoothing transformers for time-series forecasting. In The Eleventh International Conference on Learning Representations. 2023. URL: https://openreview.net/forum?id=5m_3whfo483.

[8]

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, 27268–27286. PMLR, 17–23 Jul 2022. URL: https://proceedings.mlr.press/v162/zhou22g.html.

[9]

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI conference on artificial intelligence, volume 35, 11106–11115. 2021.

[10]

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. In Advances in Neural Information Processing Systems, volume 34, 22419–22430. Curran Associates, Inc., 2021. URL: https://proceedings.neurips.cc/paper_files/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf.

[11]

Xiaoye Miao, Yangyang Wu, Jun Wang, Yunjun Gao, Xudong Mao, and Jianwei Yin. Generative Semi-supervised Learning for Multivariate Time Series Imputation. Proceedings of the AAAI Conference on Artificial Intelligence, 35(10):8983–8991, May 2021. URL: https://ojs.aaai.org/index.php/AAAI/article/view/17086.

[12]

YUSUKE TASHIRO, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: conditional score-based diffusion models for probabilistic time series imputation. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems. 2021. URL: https://openreview.net/forum?id=VzuIzbRDrum.

[13]

Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. GP-VAE: Deep probabilistic time series imputation. In International conference on artificial intelligence and statistics, 1651–1661. PMLR, 2020.

[14]

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. BRITS: Bidirectional Recurrent Imputation for Time Series. arXiv:1805.10572 [cs, stat], May 2018. URL: http://arxiv.org/abs/1805.10572, arXiv:1805.10572.

[15]

Jinsung Yoon, William R. Zame, and Mihaela van der Schaar. Estimating missing data in temporal data streams using multi-directional recurrent neural networks. IEEE Transactions on Biomedical Engineering, 66(5):1477–1490, 2019. doi:10.1109/TBME.2018.2874712.

[16]

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent Neural Networks for Multivariate Time Series with Missing Values. Scientific Reports, 8(1):6085, April 2018. URL: https://www.nature.com/articles/s41598-018-24271-9, doi:10.1038/s41598-018-24271-9.

[17]

Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. Graph-guided network for irregularly sampled multivariate time series. In International Conference on Learning Representations. 2022. URL: https://openreview.net/forum?id=Kwm8I7dU-l5.

[18]

Qianli Ma, Chuxin Chen, Sen Li, and Garrison W. Cottrell. Learning Representations for Incomplete Time Series Clustering. Proceedings of the AAAI Conference on Artificial Intelligence, 35(10):8837–8846, May 2021. URL: https://ojs.aaai.org/index.php/AAAI/article/view/17070.

[19]

Johann de Jong, Mohammad Asif Emon, Ping Wu, Reagon Karki, Meemansa Sood, Patrice Godard, Ashar Ahmad, Henri Vrooman, Martin Hofmann-Apitius, and Holger Fröhlich. Deep learning for clustering of multivariate clinical patient trajectories with missing values. GigaScience, 8(11):giz134, November 2019. URL: https://doi.org/10.1093/gigascience/giz134, doi:10.1093/gigascience/giz134.

[20]

Xinyu Chen and Lijun Sun. Bayesian Temporal Factorization for Multidimensional Time Series Prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–1, 2021. URL: http://arxiv.org/abs/1910.06366, arXiv:1910.06366, doi:10.1109/TPAMI.2021.3066551.

[21]

Yunhao Zhang and Junchi Yan. Crossformer: transformer utilizing cross-dimension dependency for multivariate time series forecasting. In The Eleventh International Conference on Learning Representations. 2023. URL: https://openreview.net/forum?id=vSVLM2j9eie.

[22]

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: exploring the stationarity in time series forecasting. In Advances in Neural Information Processing Systems. 2022.

[23]

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In International Conference on Learning Representations. 2018. URL: https://openreview.net/forum?id=ryQu7f-RZ.

[24]

William M. Rand. Objective Criteria for the Evaluation of Clustering Methods. Journal of the American Statistical Association, 66(336):846–850, 1971. URL: https://www.jstor.org/stable/2284239, doi:10.2307/2284239.

[25]

Roderick J. A. Little. A Test of Missing Completely at Random for Multivariate Data with Missing Values. Journal of the American Statistical Association, 83(404):1198–1202, 1988. URL: https://www.jstor.org/stable/2290157, doi:10.2307/2290157.

[26]

Niels Bruun Ipsen, Pierre-Alexandre Mattei, and Jes Frellsen. Not-\MIWAE\: deep generative modelling with missing not at random data. In International Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=tu29GQT0JFy.