Source code for pypots.imputation.fedformer.model

"""
The implementation of FEDformer for the partially-observed time-series imputation task.

"""

# Created by Wenjie Du <wenjay.du@gmail.com>
# License: BSD-3-Clause

from typing import Union, Optional

import torch
from torch.utils.data import DataLoader

from .core import _FEDformer
from ..base import BaseNNImputer
from ..saits.data import DatasetForSAITS
from ...data.checking import key_in_data_set
from ...nn.modules.loss import Criterion, MAE, MSE
from ...optim.adam import Adam
from ...optim.base import Optimizer


[docs] class FEDformer(BaseNNImputer): """The PyTorch implementation of the FEDformer model. FEDformer is originally proposed by Woo et al. in :cite:`zhou2022fedformer`. Parameters ---------- n_steps : The number of time steps in the time-series data sample. n_features : The number of features in the time-series data sample. n_layers : The number of layers in the FEDformer. n_heads : The number of heads in the multi-head attention mechanism. d_model : The dimension of the model. d_ffn : The dimension of the feed-forward network. moving_avg_window_size : The window size of moving average. dropout : The dropout rate for the model. version : The version of the model. It has to be one of ["Wavelets", "Fourier"]. The default value is "Fourier". modes : The number of modes to be selected. The default value is 32. mode_select : Get modes on frequency domain. It has to "random" or "low". The default value is "random". 'random' means sampling randomly; 'low' means sampling the lowest modes; ORT_weight : The weight for the ORT loss, the same as SAITS. MIT_weight : The weight for the MIT loss, the same as SAITS. batch_size : The batch size for training and evaluating the model. epochs : The number of epochs for training the model. patience : The patience for the early-stopping mechanism. Given a positive integer, the training process will be stopped when the model does not perform better after that number of epochs. Leaving it default as None will disable the early-stopping. training_loss: The customized loss function designed by users for training the model. If not given, will use the default loss as claimed in the original paper. validation_metric: The customized metric function designed by users for validating the model. If not given, will use the default MSE metric. optimizer : The optimizer for model training. If not given, will use a default Adam optimizer. num_workers : The number of subprocesses to use for data loading. `0` means data loading will be in the main process, i.e. there won't be subprocesses. device : The device for the model to run on. It can be a string, a :class:`torch.device` object, or a list of them. If not given, will try to use CUDA devices first (will use the default CUDA device if there are multiple), then CPUs, considering CUDA and CPU are so far the main devices for people to train ML models. If given a list of devices, e.g. ['cuda:0', 'cuda:1'], or [torch.device('cuda:0'), torch.device('cuda:1')] , the model will be parallely trained on the multiple devices (so far only support parallel training on CUDA devices). Other devices like Google TPU and Apple Silicon accelerator MPS may be added in the future. saving_path : The path for automatically saving model checkpoints and tensorboard files (i.e. loss values recorded during training into a tensorboard file). Will not save if not given. model_saving_strategy : The strategy to save model checkpoints. It has to be one of [None, "best", "better", "all"]. No model will be saved when it is set as None. The "best" strategy will only automatically save the best model after the training finished. The "better" strategy will automatically save the model during training whenever the model performs better than in previous epochs. The "all" strategy will save every model after each epoch training. verbose : Whether to print out the training logs during the training process. """ def __init__( self, n_steps: int, n_features: int, n_layers: int, d_model: int, n_heads: int, d_ffn: int, moving_avg_window_size: int, dropout: float = 0, version="Fourier", modes=32, mode_select="random", ORT_weight: float = 1, MIT_weight: float = 1, batch_size: int = 32, epochs: int = 100, patience: Optional[int] = None, training_loss: Union[Criterion, type] = MAE, validation_metric: Union[Criterion, type] = MSE, optimizer: Union[Optimizer, type] = Adam, num_workers: int = 0, device: Optional[Union[str, torch.device, list]] = None, saving_path: str = None, model_saving_strategy: Optional[str] = "best", verbose: bool = True, ): super().__init__( training_loss=training_loss, validation_metric=validation_metric, batch_size=batch_size, epochs=epochs, patience=patience, num_workers=num_workers, device=device, saving_path=saving_path, model_saving_strategy=model_saving_strategy, verbose=verbose, ) self.n_steps = n_steps self.n_features = n_features # model hyperparameters self.n_layers = n_layers self.n_heads = n_heads self.d_model = d_model self.d_ffn = d_ffn self.moving_avg_window_size = moving_avg_window_size self.dropout = dropout self.version = version self.modes = modes self.mode_select = mode_select self.ORT_weight = ORT_weight self.MIT_weight = MIT_weight # set up the model self.model = _FEDformer( n_steps=self.n_steps, n_features=self.n_features, n_layers=self.n_layers, d_model=self.d_model, n_heads=self.n_heads, d_ffn=self.d_ffn, moving_avg_window_size=self.moving_avg_window_size, dropout=self.dropout, version=self.version, modes=self.modes, mode_select=self.mode_select, ORT_weight=self.ORT_weight, MIT_weight=self.MIT_weight, training_loss=self.training_loss, validation_metric=self.validation_metric, ) self._send_model_to_given_device() self._print_model_size() # set up the optimizer if isinstance(optimizer, Optimizer): self.optimizer = optimizer else: self.optimizer = optimizer() # instantiate the optimizer if it is a class assert isinstance(self.optimizer, Optimizer) self.optimizer.init_optimizer(self.model.parameters()) def _assemble_input_for_training(self, data: list) -> dict: ( indices, X, missing_mask, X_ori, indicating_mask, ) = self._send_data_to_given_device(data) inputs = { "X": X, "missing_mask": missing_mask, "X_ori": X_ori, "indicating_mask": indicating_mask, } return inputs def _assemble_input_for_validating(self, data: list) -> dict: return self._assemble_input_for_training(data) def _assemble_input_for_testing(self, data: list) -> dict: indices, X, missing_mask = self._send_data_to_given_device(data) inputs = { "X": X, "missing_mask": missing_mask, } return inputs
[docs] def fit( self, train_set: Union[dict, str], val_set: Optional[Union[dict, str]] = None, file_type: str = "hdf5", ) -> None: # Step 1: wrap the input data with classes Dataset and DataLoader train_dataset = DatasetForSAITS(train_set, return_X_ori=False, return_y=False, file_type=file_type) train_dataloader = DataLoader( train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers, ) val_dataloader = None if val_set is not None: if not key_in_data_set("X_ori", val_set): raise ValueError("val_set must contain 'X_ori' for model validation.") val_dataset = DatasetForSAITS(val_set, return_X_ori=True, return_y=False, file_type=file_type) val_dataloader = DataLoader( val_dataset, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers, ) # Step 2: train the model and freeze it self._train_model(train_dataloader, val_dataloader) self.model.load_state_dict(self.best_model_dict) # Step 3: save the model if necessary self._auto_save_model_if_necessary(confirm_saving=self.model_saving_strategy == "best")