Donald B. Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976. URL:


Wenjie Du, David Cote, and Yan Liu. SAITS: Self-Attention-based Imputation for Time Series. Expert Systems with Applications, 219:119619, 2023. URL:, doi:10.1016/j.eswa.2023.119619.


Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL:


Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis. In The Eleventh International Conference on Learning Representations. 2023. URL:


Xiaoye Miao, Yangyang Wu, Jun Wang, Yunjun Gao, Xudong Mao, and Jianwei Yin. Generative Semi-supervised Learning for Multivariate Time Series Imputation. Proceedings of the AAAI Conference on Artificial Intelligence, 35(10):8983–8991, May 2021. URL:


YUSUKE TASHIRO, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: conditional score-based diffusion models for probabilistic time series imputation. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems. 2021. URL:


Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. GP-VAE: Deep Probabilistic Time Series Imputation. arXiv:1907.04155 [cs, stat], February 2020. URL:, arXiv:1907.04155.


Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. BRITS: Bidirectional Recurrent Imputation for Time Series. arXiv:1805.10572 [cs, stat], May 2018. URL:, arXiv:1805.10572.


Jinsung Yoon, William R. Zame, and Mihaela van der Schaar. Estimating missing data in temporal data streams using multi-directional recurrent neural networks. IEEE Transactions on Biomedical Engineering, 66(5):1477–1490, 2019. doi:10.1109/TBME.2018.2874712.


Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent Neural Networks for Multivariate Time Series with Missing Values. Scientific Reports, 8(1):6085, April 2018. URL:, doi:10.1038/s41598-018-24271-9.


Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. Graph-Guided Network for Irregularly Sampled Multivariate Time Series. arXiv:2110.05357 [cs], March 2022. URL:, arXiv:2110.05357.


Qianli Ma, Chuxin Chen, Sen Li, and Garrison W. Cottrell. Learning Representations for Incomplete Time Series Clustering. Proceedings of the AAAI Conference on Artificial Intelligence, 35(10):8837–8846, May 2021. URL:


Johann de Jong, Mohammad Asif Emon, Ping Wu, Reagon Karki, Meemansa Sood, Patrice Godard, Ashar Ahmad, Henri Vrooman, Martin Hofmann-Apitius, and Holger Fröhlich. Deep learning for clustering of multivariate clinical patient trajectories with missing values. GigaScience, 8(11):giz134, November 2019. URL:, doi:10.1093/gigascience/giz134.


Xinyu Chen and Lijun Sun. Bayesian Temporal Factorization for Multidimensional Time Series Prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–1, 2021. URL:, arXiv:1910.06366, doi:10.1109/TPAMI.2021.3066551.


Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: exploring the stationarity in time series forecasting. In Advances in Neural Information Processing Systems. 2022.


Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In International Conference on Learning Representations. 2018. URL:


William M. Rand. Objective Criteria for the Evaluation of Clustering Methods. Journal of the American Statistical Association, 66(336):846–850, 1971. URL:, doi:10.2307/2284239.


Roderick J. A. Little. A Test of Missing Completely at Random for Multivariate Data with Missing Values. Journal of the American Statistical Association, 83(404):1198–1202, 1988. URL:, doi:10.2307/2290157.